Расчет общего освещения – Расчет общего освещения

Содержание

Расчет общего освещения

1. Общие сведения

В настоящее время 90 % информации человек получает с помо­щью органов зрения. Нерациональное освещение на рабочем мес­те в цехе, лаборатории, помещении ВЦ, офисе, дома при чтении приводит к повышенной утомляемости, снижению работоспособ­ности, перенапряжению органов зрения и снижению его остроты.

Рациональное освещение должно быть спроектировано в соот­ветствии с нормами, приведенными в СНиП 23-05—95 [3], а также рекомендациями, изложенными в литературе [1, 2].

При освещении производственных помещений используют естественное освещение, создаваемое прямыми солнечными лучами и рассеянным светом небосвода и меняющимся в зависимости от географической широты, времени года и суток, степени облачности и прозрачности атмосферы; искусственное освещение, создаваемое электрическими источниками света, и совмещенное освещение, при котором недостаточное по нормам естественное освещение дополняют искусственным.

Основной задачей производственного освещения является поддержание на рабочем месте освещенности, соответствующей характеру зрительной работы.

При организации производственного освещения следует выбирать необходимый спектральный состав светового потока. Это требование особенно существенно для обеспечения правильной цветопередачи, а в отдельных случаях для усиления цветовых контрастов.

Осветительные установки должны быть удобны и просты в эксплуатации, долговечны, отвечать требованиям эстетики, электробезопасности, а также не должны быть причиной возникновения взрыва или пожара.

2. МЕТОДИКА РАСЧЕТА

Учитывая заданные по варианту характеристики зрительной ра­боты (наименьший размер объекта различения, характеристика фона и контраст объекта различения с фоном), с помощью табл. 1

1. Нормы проектирования искусственного освещения (фрагмент)

Наимень­ший размеробъекта различе­ния, мм

Разряд зри­тельной работы

Подраз-ряд зри­тельной работы

Контраст объекта с фоном

Характери­стика фона

Освещенность, лк

Характе­ристика зрительной работы

комби­ниро­ванное освеще­ние

общее освеще­ние

а

Малый

Темный

5000

1500

б

» Средний

Средний Темный

4000

1250

Наивысшей точности

Менее 0,15

I

в

Малый Средний Большой

Светлый Средний Темный

2500

750

г

Средний Большой

Светлый

Средний

1500

400

а

Малый

Темный

4000

1250

б

» Средний

Средний Темный

3000

750

Очень

высокой точности

0,15-0,3

II

в

Малый Средний Большой

Светлый Средний Темный

2000

500

г

Средний Большой

Светлый »

Средний

1000

300

Высокой точности

0,3-0,5

III

а

Малый

Темный

2000

500

б

» Средний

Средний Темный

1000

300

в

Малый Средний Большой

Светлый Средний Темный

750

300

г

Средний Большой

»

Светлый »

Средний

400

200

определяют разряд и подразряд зрительной работы, а также нор­мируемый уровень минимальности освещенности на рабочем месте [3].

Распределяют светильники и определяют их число (2).

Равномерное освещение горизонтальной рабочей поверхности достигается при определенных отношениях расстояния между центрами светильников L, м (L= 1,75H) высоте их подвеса над рабочей поверхностьюH р, м (в расчетахH р=Н).

Число светильников с люминесцентными лампами (ЛЛ), кото­рые приняты во всех вариантах в качестве источника света,

N = S ,(1)

LM

где S— площадь помещения, м2;М— расстояние между параллельными ряда­ми, м.

В соответствии с рекомендациями

М >0,6Нр(2)

Оптимальное значение М= 2…3 м.

Для достижения равномерной горизонтальной освещенности светильники с ЛЛ рекомендуется располагать сплошными рядами, параллельными стенам с окнами или длинным сторонам помеще­ния.

Для расчета общего равномерного освещения горизонтальной Рабочей поверхности используют метод светового потока, учиты­вающий световой поток, отраженный от потолка и стен [2].

Расчетный световой поток, лм, группы светильников с ЛЛ

Фл. расч=ЕнSZK

где Ен— нормированная минимальная освещенность, лк; Z—коэффициент ми­нимальной освещенности; Z = Есрмин, для ЛЛ Z = 1,1;К— коэффициент запаса; η — коэффициент использования светового потока ламп (η зависит от КПД и кривой распределения силы света светильника, коэффициента отражения от по­толка рп и стен рс, высоты подвеса светильников над рабочей поверхностью Н и показателя помещения i).

Показатель помещения

i = АВ___ , (4)

Нр(А+В)

где А иВ — соответственно длина и ширина помещения, м.

Значения коэффициента запаса зависят от характеристики по­мещения: для помещений с большим выделением тепла К =2, со среднимК= 1,8, с малымК= 1,5 [21,

Значения коэффициента использования светового потока [2] приведены ниже.

Показатель помещения

1

2

3

4

5

Коэффициент использования светового потока η

0,28…0,46

0,34…0,57

0,37…0,62

0,39.-0,65

0,40…0,66

По полученному значению светового потока с помощью табл. 2 подбирают лампы, учитывая, что в светильнике с ЛЛ может быть больше одной лампы, т. е. п может быть равно 2 или 4. В этом слу­чае световой поток группы ЛЛ необходимо уменьшить в 2 или 4 раза [2].

2. Характеристики люминесцентных ламп

Тип и мощность, Вт

Длина, мм

Световой поток, лм

ЛДЦ20

604

820

ЛБ20

604

1180

ЛДЦЗО

909

1450

ЛБЗО

909

2100

ЛДЦ40

1214

2100

ЛД40

1214

2340

ЛДЦ65

1515

3050

ЛДЦ80

1515

4070

ЛБ80

1515

5220

Световой поток выбранной лампы должен соответствовать со­отношению

Ф л.расч (0,9…1,2)Фл.табл,

где Ф л.расч -расчетный световой поток, лм; Флт,1бл —световой поток, определен­ный по табл. 2, лм.

Потребляемая мощность, Вт, осветительной установки

Р = рNn (5)

где р — мощность лампы, Вт; N число светильников, шт.; п — число ламп в све­тильнике; для ЛЛп = 2, 4.

studfiles.net

Как самостоятельно выполнить расчет освещенности помещения

В электрике существует такое понятие как, расчет освещенности помещения. Данный расчет является фундаментом всей осветительной части электропроводки, поэтому ему следует уделить особое внимание. В этой статье мы подробно разберем:

  • Зачем делать расчет освещенности помещения?
  • А также рассмотрим пошаговое выполнение расчёта освещённости на конкретном примере

Теперь, обо всем по порядку.

Зачем делать расчет освещения?

В первую очередь, данный расчет необходим, для создания достаточной освещенности помещения, которая в свою очередь обеспечивает благоприятные и комфортные условия для жизнедеятельности человека.

Недостаток освещения или его чрезмерность, вызывает сильное напряжение глаз, быструю утомляемость и оказывает ощутимый психологический дискомфорт, что неблагоприятным образом отражается на здоровье человека в целом.

Идеальным освещением для наших глаз, является естественный природный свет (дневное, утреннее или вечернее солнце, солнце за облаками).

Основной задачей расчета освещенности помещения, является максимальное приближение искусственного освещения к естественному. К искусственному освещению относиться такой свет, которым человек имеет возможность управлять.

Электрический свет, является искусственным, он получается в результате преобразование электрической энергии в один из видов электромагнитного излучения, которое воспринимается человеческим глазом как свет. Именно такое преобразование происходит внутри ламп установленных в корпусах осветительных электроустановок (светильники, люстры, бра, торшеры и так далее).

В строительно-проектировочной документации(СНиП) существуют специальные правила, в которых прописаны нормы освещенности для различных видов помещений. Ниже рассмотрен пример, пошагового выполнение расчета с подробными комментариями и пояснениями.

Расчет освещения, пример

Расчет освещенности помещения производиться по формуле:

Для удобства запишем ее так:

Фл = (Ен * S * k * z) / (N * η * n)

где,

1. Фл – световой поток лампы,

2. Ен – норма освещенности

3. S – площадь помещения

4. k — коэффициент запаса

5. z – поправочный коэффициент

6. N – количество принятых светильников

7. η – коэффициент использования светового потока

8. n – число ламп в светильнике.


Данные нашего примера:

  • Жилая комната.
  • Длина – 5,5 м,
  • Ширина – 3,5 м.
  • Потолок — белый крашенный,
  • Стены – обои, светлые однотонные (без рисунка) персикового оттенка,
  • Пол – линолеум, серого цвета

Планируется установка пяти рожковой люстры, с пятью лампами, каждая из которых монтируется внутри плафона, изготовленного из белой матовой ткани во весь размер лампы.

Данная комната имеет стандартную высоту потолков 2,5 м. Опираясь на конструктивное исполнение светильника определяем высоту его подвеса. Для нашего примера эти данные будут следующими:

  •  высота установки люстры от пола до плафонов в которых установлены лампы — 2,3 м

Теперь найдем все необходимые для расчетов данные.

2. Ен — нормированная освещенность

Измеряется в Люксах (Лк), является нормированной величиной, прописанной в своде правил строительной документации СНиП. Ниже представлена таблица норм освещенности.

Таблица №1. Рекомендуемые нормы освещенности жилых помещений, согласно СНиП 23-05-95

Помещение нашего примера — жилая комната. Согласно таблицы №1 нормируемая освещенность для данного вида помещений равна 150 Люкс (Лк).

Ен = 150

Подставим значение в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * S * k * z) / (N * η * n)


3. S – площадь помещения

Для выполнения последующих расчетов нам потребуется знать площадь данной комнаты. Посчитать ее мы можем по формуле площади прямоугольника:

S = а * b,

где,

  • S — площадь помещения (метры квадратные — м2)
  • а — длина помещения (метры квадратные — м2), в нашем примере 5,5 м
  • b — ширина помещения (метры квадратные — м2), в нашем примере 3,5 м

Подставим наши значения

S = a * b = 5,5 * 3,5 = 19,25 м2

S = 19,25

Подставим данные в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * k * z) / (N * η * n)


4. k — коэффициент запаса

Коэффициент запаса (зависит от типа ламп и степени загрязненности помещения) Коэффициент запаса k учитывает запыленность помещения, снижение светового потока ламп в процессе эксплуатации. Значения коэффициента k приведены в таблице.

Таблица №2. Коэффициент запаса для жилых помещений для различных типов ламп

В нашей люстре планируется использование светодиодных ламп, выбираем коэффициент запаса равный 1.

K = 1.

Подставим значение в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * z) / (N * η * n)


5. z – поправочный коэффициент (коэффициент неравномерности)

z — поправочный коэффициент, применяемый в помещениях где требуется освещенность больше чем нормируемая минимальная

Данный коэффициент следует применять в помещениях где планируется выполнение точной зрительной работы, например, читать или писать.

Для ламп накаливания и ДРЛ (ртутная газоразрядная лампа) z = 1,15, для люминесцентных и светодиодных ламп z = 1,1

В наш светильник будут установлены светодиодные лампы, используем поправочный коэффициент 1,1.

z = 1,1

Вставляем данные в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (N * η * n)


6. N – количество принятых светильников

Освящать комнату будет один светильник, расположенный в центре помещения.

N = 1

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (1 * η * n)


7. η – коэффициент использования светового потока

Для того что бы найти коэффициент использования светового потока нам потребуется рассчитать индекс помещения – i.

Воспользуемся следующей формулой:

i = S / ((a + b) * h)

где,

  •  i — индекс помещения,
  • S — площадь помещения (метры квадратные — м2), — в нашем примере 19,25 м2;
  • а — длина комнаты (метры квадратные — м2), — в нашем примере 5,5 м;
  • b — ширина комнаты (метры квадратные — м2), — в нашем примере 3,5 м;
  • h — высота подвеса светильника от пола (метры — м), — в нашем примере 2,3 м;

Считаем:

i = S / ((a + b) * h) = 19,25 / ((5,5 + 3,5) * 2,3) = 19,25 / (9 * 2,3) = 19,25 / 20,7 = 0,929…

округляем до значения близкого к:

0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 3, 3.5, 4, 5

В нашем случае это значение 0.9


Теперь нам потребуются данные о дизайне нашей комнаты. Конкретно интересуют три вещи пол, потолок и стены их цветовой оттенок в формате белый — светлый — темный — серый — черный. Например, бежевые стены будут относиться к светлым, красные, вишневые, коричневые к темным, с черным и белым и так все понятно.

Эти оттенки называются коэффициентом отражения (Р) и выражаются в процентном соотношении следующим образом:

  • 70% — белый
  • 50% — светлый
  • 30% — серый
  • 10% — темный
  • 0% — черный

Комната, приведенная в нашем примере, имеет:

  •  Потолок — белый крашенный, в процентном соотношении 70% (белый)
  • Стены – обои светлые, однотонные, (без рисунка) персикового оттенка, в процентном соотношении 50% (светлый)
  • Пол – линолеум серого цвета, в процентном соотношении 30% (серый)

Обладая всеми этими данными, мы можем определить коэффициент использования светового потока светильника — η.

Для этого воспользуемся соответствующей нашему светильнику таблицей, одной из 5 (таблицы №3-7) приведенных ниже.

Наш светильник за счет конструктивного исполнения плафонов (матовая белая ткань) имеет равномерное распределение светового потока, поэтому данные по нему ищем по таблице №5. Ниже приведены 5 таблиц в которых изложены данные для определения светового потока, после которых будет детально разобрана инструкция с описанием того как ими пользоваться.

Таблица №3. Коэффициент использования для потолочного светильника

Таблица №4. Коэффициент использования для подвесного светильника

Таблица №5. Коэффициент использования для светильника с равномерным освещением

Таблица №6. Коэффициент использования для светильников с косинусным распределением светового потока

Таблица №7. Коэффициент использования для светильников с глубокими плафонами

Напомню, светильник нашего примера является равномерным, относится к Таблице №3.

Комната, приведенная в нашем примере, имеет:

  • Потолок — белый крашенный, в процентном соотношении 70% (белый)
  • Стены – обои светлые однотонные (без рисунка) персикового оттенка, в процентном соотношении 50% (светлый)
  • Пол – серый линолеум, в процентном соотношении 30% (серый)

i — который мы рассчитывали выше по формуле, i = S / (a + b) * h)) = 0.9

В правой вертикальной колонке таблицы ищем соответствующий рассчитанному – i.

В горизонтальных строках подбираем данные комнаты, соответствующие нашим:

  • Потолок — 70% (белый),

  •  стены – 50% (светлый),

  • пол – 30% (серый),

Совмещаем линии P и i.

η = 0.51

Подставим полученные данные в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (1 * 0.51 * n)


8. n – число ламп в светильнике

Люстра в нашем примере пяти рожковая, в ее конструкции предусмотрена установка 5 ламп.

n = 5

Вставляем данное значение в формулу:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (1 * 0.51 * 5)

Все необходимые значения найдены, теперь мы можем рассчитать Фл – световой поток лампы.

Считаем:

Фл = (Ен * S * k * z) / (N * η * n)

Фл = (150 * 19,25 * 1 * 1,1) / (1 * 0.51 * 5) = 3176,25 / 2,55 = 1245,58…

Округлим 1245,58 до целого значения, получим 1246.

Световой поток лампы измеряется в Люменах (Лм), готовый результат запишем как:

Фл = 1246 Лм

Каждая лампа нашего светильника должна иметь световой поток равный 1246 Лм.

Далее, мы рассмотрим, каким образом выбрать лампу зная ее световой поток, но для начала сделаем небольшое отступление.


В настоящее время на рынке электрической продукции представлены следующие лампы:

  • Лампа накаливания
  • Галогенная лампа
  • Светодиодная лампа
  • Люминесцентная лампа
  • Компактная люминесцентная лампа
  • Газоразрядная лампа

Каждая из этих ламп имеет свои характеристики, особенности, преимущества и недостатки. Поэтому, делая выбор в сторону конкретной лампы нужно учитывать следующие вещи:

  • Мощность лампы
  • Нагрев корпуса (для ламп накаливания и галогенных ламп)
  • Световой поток
  • Цветопередачу

Эти данные (кроме температуры нагрева корпуса) указаны заводом изготовителем на упаковочной коробке лампы, опираясь на них, мы можем выбрать требуемую освещенность для конкретного помещения.

Мощность лампы – определяет, количество потребляемой электроэнергии, измеряется в Ватах (Вт)

Световой поток – излучаемое лампой количество света, измеряется в Люменах (Лм).

Цветопередача – состоит из цветовой температуры и оттенка. Цветовая температура измеряется в диапазоне от красного 1800 К – до синего 16 000 К цвета.

Чем меньше значение, тем цветность ближе к красному, чем больше, тем ближе к синему. Например, знакомая нам всем 100 Ваттная лампа накаливания имеет цветность 2800 К.

Измеряется цветопередача в Кельвинах (К).

Оттенок, для большинства видов ламп освещения, может быть теплого или холодного света, задает общую тональность светового потока.

Таблица №8. Цветопередача некоторых источников света.

Теперь, поговорим о таких понятиях как световой поток и световая отдача.

Световой поток – количество света, излучаемое лампой.

Световая отдача – отношение светового потока к мощности (люмен на ватт, лм/Вт), показатель эффективности осветительной способности лампы, а также ее экономичности.

Ниже приведены шесть таблиц (таблицы №9-14) световой отдачи наиболее распространенных источников света.

Таблица №9. Лапа накаливания, с прозрачным стеклом (2750 К, теплый свет)

Срок службы 1000 часов. Класс энергоэффективности Е.

Таблица №10. Лапа накаливания, с матовым стеклом (2700 К, теплый свет)

Срок службы 1000 часов. Класс энергоэффективности Е.

Таблица №11. Галогенная лампа (3000 К, теплый свет)

Срок службы 2000 часов. Класс энергоэффективности В.

Таблица №12. Компактная люминесцентная лампа (КЛЛ), 2700 К — теплого света

Срок службы от 8 000 до 10 000 часов. Класс энергоэффективности А.

Таблица №13. Светодиодная лампа, 3000 К — теплого света

Срок службы 30 000 – 40 000 часов. Класс энергоэффективности А.

Таблица №14. Светодиодная лампа, 4500 К — белого света

Срок службы 30 000 – 40 000 часов. Класс энергоэффективности А.


Возвращаемся к нашему примеру.

По выполненным выше результатам расчета освещенности Фл = 1246 Лм, то есть каждая лампа нашего светильника должна быть мощностью 1246 Лм.

Теперь выполним подбор ламп:

  1. Первым пунктом стоит определить какие лампы могут дать световой поток максимально приближенный к расчетному 1246 Люмен. Для этого воспользуемся таблицами №9-14.

Смотрим:

  •  таблица №9 – лампа накаливания с прозрачным стеклом, теплого света 2700 К, мощностью 95 Вт – 1300 Лм

  • таблица №10 – лампа накаливания с матовым стеклом, теплого света 2700 К, мощностью 95 Вт – 1290 Лм

  • таблица №11 галогенная лампа, теплого света 3000 К, мощностью 75 Вт – 1125 Лм

  • таблица №12 компактная люминесцентная лампа (КЛЛ), 2700 К — теплого света мощностью 20 Вт – 1170 Лм,

  • таблица №13 светодиодная лампа, 3000 К — теплого света мощностью 12 Вт – 1170 Лм,

  • таблица №14 светодиодная лампа, 4500 К — белого света – значение соответствующее расчетному отсутствует.
  1. Следующим пунктом смотрим конструктивные ограничения светильника, в нашем случае люстры. Как правило это наклейка, на которой заводом изготовителем отображена техническая информация устройства. Ниже приведен пример:

  • марка (YMP9439)
  • напряжение и частота (2230V – 50Hz)
  • цоколь и максимальная мощность лампы (Е27, Max. 60W)
  • производитель (Made in P.R.C.)

Нас интересует третий пункт, с цоколем все понятно, а вот максимальная мощность лампы (Max. 60W) является существенным ограничением по использованию в светильнике ламп освещения. Допустим, что люстра в нашем примере имеет аналогичные изображенной на картинке выше характеристики.

Максимальная мощность как правило указывается в эквиваленте ламп накаливания, то есть максимальная лампа накаливания которую можно использовать в патроне данного светильника 60 Вт. Обусловлено это тем, что большинство патронов современных светильников изготавливаются из различного рода пластмассовых композиций, которые ограничены по температуре нагрева.

Лампы накаливания и галогенные лампы преобразуют электрическую энергию не только в видимый световой поток (около 60 %), но еще и в тепловую энергию (порядка 40%), поэтому в нормальном эксплуатационном режиме происходит достаточно сильный нагрев стеклянного корпуса и металлического цоколя лампы. На практике максимально разрешенная лампа под воздействием тепла издает неприятный запах горелой пластмассы, поэтому не желательно использовать максимальный номинал.

Исходя из конструктивных характеристик нашей люстры делаем выбор из ламп не подверженные сильному нагреву:

  • светодиодные лампы, холодного и теплого света (вариант подороже)
  • компактные люминесцентные лампы холодного и теплого света (более дешевый вариант)

Для нашего примера мы выбрали светодиодные лампы, теплого света (3000 К), характеристики данных ламп приведены в таблице №13. Максимально близкими к расчетному значению (1246 Лм) будет лампа мощностью 12 Вт – 1170 Лм.

Итог: Согласно расчетам, чтобы выполнить освещение комнаты площадью 19,25 метров пяти рожковой люстрой нам потребуется 5 светодиодных ламп мощностью 12 Вт, световым потоком 1170 Лм.

Суммарная потребляемая мощность люстры составит 12 * 5 = 60 Вт.

Суммарный световой поток 1170 * 5 = 5850 Лм.

elektrika-svoimi-rykami.com

3. Порядок выполнения задания.

3.1. Ознакомиться с методикой расчёта.

3.2. Определить разряд и подразряд зрительной работы, нормы освещённости на рабочем месте, используя данные варианта (табл. 3.4.) и нормы освещённости.

3.3. Рассчитать число светильников.

3.4. Распределить светильники общего освещения с ЛЛ по площади производственного помещения.

3.5. Определить световой поток группы ламп в системе общего освещения, используя данные варианта и формулу (3.3.).

3.6. Подобрать лампу по данным табл.3.3. и проверить выполнение условия соответствия

Ф л.расч. и Ф л. табл.

3.7. Определить мощность, потребляемую осветительной установкой.

4. Таблица 6.4. Варианты заданий по теме “Расчёт общего освещения”

Вариант

Производственное помещение

Габаритные размеры помещения, м:

Длина А (3)

ШиринаВ (4)

Высота Н (5)

Наименьший объект различения

Контраст объекта с фоном

Характеристика фона

Характеристика помещения по условиям среды

01

Вычислительный центр, машинный зал

60

30

5

0,4

малый

светлый

Небольшая запылённость

02

Вычислительный центр, машинный зал

40

20

5

0,45

средний

средний

Небольшая запылённость

03

Дисплейный зал

35

20

5

0,35

малый

средний

Небольшая запылённость

04

Дисплейный зал

20

15

5

0,32

большой

тёмный

Небольшая запылённость

05

Архив хранения носителей информации

25

10

5

0,5

средний

светлый

Небольшая запылённость

06

Лаборатория технического обслуживания ЭВМ

25

12

5

0,31

средний

средний

Небольшая запылённость

07

Аналитическая лаборатория

20

10

5

0,48

средний

средний

Небольшая запылённость

08

Оптическое производство; участок подготовки шихты

36

12

5

0,49

большой

средний

Большая запылённость

09

Участок варки стекла

60

24

8

0,5

средний

светлый

Небольшая запылённость

10

Механизированный участок получения заготовок

46

24

8

0,5

средний

светлый

Небольшая запылённость

11

Участок шлифовальных станков

40

18

6

0,4

большой

светлый

Небольшая запылённость, высокая влажность

12

Участок полировальных станков

50

24

6

0,38

средний

светлый

Небольшая запылённость, высокая влажность

13

Механический цех, металлорежущие станки

90

24

6

0,28

средний

светлый

Небольшая запылённость

14

Прецизионные металлообрабатывающие станки

36

18

5

0,3

средний

светлый

Небольшая запылённость

15

Прецизионные металлообрабатывающие станки

54

12

5

0,35

большой

средний

Небольшая запылённость

16

Станки с ЧПУ

60

24

5

0,2

средний

светлый

Небольшая запылённость

17

Автоматические линии

80

36

5

0,34

большой

светлый

Небольшая запылённость

18

Инструментальный цех

60

18

5

0,18

средний

светлый

Небольшая запылённость

Продолжение табл. 6.4.

19

Инструментальный цех

76

24

6

0,23

большой

средний

Небольшая запылённость

20

Участок сборки

50

18

6

0,25

большой

светлый

Небольшая запылённость

21

Участок сборки

56

24

5

0,28

большой

светлый

Небольшая запылённость

22

Производство печатных плат, гальванический цех: ванны (травление, мойка, металлопокрытие)

65

18

8

0,45

большой

средний

Высокая влажность, небольшая запылённость

23

Автоматические линии металлопокрытий

60

24

8

0,48

средний

средний

Высокая влажность, небольшая запылённость

24

Участок контрольно-измерительных приборов

24

12

5

0,46

средний

светлый

Небольшая запылённость

25

Рабочие места ОТК с визуальным контролем качества изделий

30

12

5

0,2

большой

светлый

Небольшая запылённость

26

Участок сварки

40

12

7

0,4

средний

светлый

Средняя запылённость

27

Участок контроля сварных соединений

66

18

5

0,35

большой

средний

Небольшая запылённость

28

Участок импульсно-дуговой сварки

56

18

8

0,4

средний

светлый

Средняя запылённость

29

Участок автоматизированных установок

90

24

8

0,45

большой

средний

Средняя запылённость

30

Лаборатория для металлографических исследований

36

12

5

0,49

средний

средний

Небольшая запылённость

31

Дисплейный зал

12

6

3

0,2

средний

средний

Небольшая запылённость

32

Архив хранения носителей информации

12

4

2,5

0,15

средний

светлый

Небольшая запылённость

33

Лаборатория технического контроля

18

12

4

0,24

большой

светлый

Небольшая запылённость

34

Химическая лаборатория

21

4

4

0,18

большой

светлый

Небольшая запылённость

35

Участок подготовки металлургической шихты

36

12

6

0,4

вредний

средний

Большая запылённость

36

Участок варки клея

24

9

6

0,3

средний

светлый

Небольшая запылённость

37

Механизированный участок резки заготовок

42

18

6

0,3

большой

средний

Большая запылённость

38

Участок полировальных станков

36

18

6

0,2

большой

средний

Небольшая запылённость

5. Пример

1. Исходные данные:

Вариант

Производственное помещение

Габаритные размеры помещения, м:

Длина А (3)

Ширина В (4)

Высота Н (5)

Наименьший объект различения, мм

Контраст объекта с фоном

Характеристика фона

Характеристика помещения по условиям среды

№ —

Вычислительный центр, машинный зал

40

20

4

0,28

средний

светлый

Небольшая запылённость

2. Цель работы: рассчитать количество светильников и ламп в светильниках в заданном помещении, необходимых для создания определенной освещенности на рабочих местах, определить потребляемую мощность осветительной установки.

3. Ход работы:

1.Определяем разряд и подразряд зрительной работы, нормы освещённости на рабочем месте по табл. 3.1.:

Характеристика зрительной работы – очень высокой точности

Разряд — 2

Подразряд – г

Комбинированное освещение – 1000 лк

Общее освещение – En= 300 лк

2. Рассчитываем число светильников N по формуле (3.1.):

N = S/ (LM),

где S – площадь помещения, а = 90м; в = 24м.

S = ав = 40 · 20 = 800 (м2).

Рассчитаем L – расстояние между центрами светильников:

L = 1,75· Н,

L = 4 ·1,75 = 7 (м).

Рассчитаем расстояние между параллельными рядами — М по формуле (3.2.):

М  0,6· Нр, где Нр = Н

М  0,6 4 = 2,4 м. Принимаем М=3 м

В данном случае:

 = 800/ (73) = 38,09 , т.е. принимаем  = 40 (шт).

3. Расчётный световой поток определим по формуле (3.3.):

где Z = 1,1; K = 1,5; En = 300

Показатель помещения определим по формуле (3.4.):

i = (40· 20) / [4(40 + 20)]

i = 3,3

По таблице 3.2. принимаем коэффициент использования светового потока ламп = 0,4.

Формула (3.3.) принимает вид:

Фл.расч. = (300 · 800 · 1,1· 1,5) / (40 · 0.4) = 24750 (лм)

Для создания освещенности в300 лк необходимо, чтобы световой поток одного светильника был равен 24750 лм. По табл. 3.3. выбираем лампу ЛБ-80 со световым потоком 5220 лм.

Для создания потока в 24 750 лм в одном светильнике должны быть 4 лампы ЛБ-80 (5220 лм).

Проверим правильность решения по соотношению (3.5.):

Ф л. расч. = (0,9 …1,2)·Фл.табл.,

где Ф л.расч. – расчётный световой поток, лм.; Ф л.табл. – световой поток, определённый по табл. 3.3., лм.

Преобразуем формулу (3.5.):

Ф л. расч / Фл.табл =(0,9 …1,2)

В данном случае:

Ф л. расч / Фл.табл = 24751 / (5220 · 4) = 1.18, что удовлетворяет условию.

4. Потребляемая мощность, Вт, осветительной установки определим по формуле (3.6.):

P = p·N·n,

где р – мощность лампы, Вт; N – число светильников, шт; n – число ламп в светильнике.,

В данном случае:

P = 80 · 40 · 4 = 12800 Вт

Вывод: для данного помещения вычислительного центра требуется 40 светильников, в каждом по 4 лампы. Тип и мощность лампы: ЛБ-80. Общая потребляемая мощность P = 12 800 Вт (12,8 кВт).

ЛИТЕРАТУРА

  1. Безопасность жизнедеятельности/С.В. Белов, Ф.А. Барбинов, А.Ф. Козьяков и др. – 2-е изд., испр. И доп. – М.: Высшая школа,1999. – 448 с.

  2. Гетия И.Г, Леонтьева И.Н., Кулемина Е.Н. Проектирование вентиляции, кондиционирования воздуха, искусственного и естественного освещения в помещении ВЦ. – М.: МГАПИ, 1996.-32с.

  3. СНиП 23-05-95. Строительные нормы и правила. Нормы проектирования. Естественное и искусственное освещение. – М.: Стройиздат, 1996.

studfiles.net

12.7. Методика расчета общего освещения помещений

Н.И. Данилов, Я.М. Щелоков Основы энергосбережения

Глава 12. Светотехника

руируемых зданий и сооружений различного назначения, рабочих зон вне зданий, открытых площадок промышленных и сельскохозяйственных предприятий, наружного освещения городов и других населенных пунктов.

Данные нормы не распространяются на проектирование осветительных установок подземных выработок, аэродромов, морских и речных портов, железнодорожных станций и их путей, спортивных и лечебнопрофилактических зданий, сельскохозяйственных складов, помещений для размещения растений, животных и птиц, а также на проектирование специальных видов технологического и охранного освещения.

На базе настоящих норм разрабатываются и согласовываются в установленном порядке отраслевые нормативы освещения.

Ниже излагаются в сокращенной форме наиболее важные положения СНиП 23-05-95, касающиеся только искусственного, преимущественно внутреннего освещения.

Нормы регламентируют наименьшую освещенность Ен на рабочей поверхности в помещении при применении разрядных ламп (ЛЛ, КЛЛ, ДРЛ, МГД НЛВД), для наружного освещения – при любых источниках света.

Принята следующая шкала ступеней нормируемых уровней Ен, лк: 0,2; 0,3; 0,5; 1; 2; 3; 4; 5; 6; 7; 10; 15; 20; 30; 50; 75; 100; 150; 200; 300; 400; 500; 600; 750; 1000; 1250; 1500; 2000; 2500; 3000; 3500; 4000; 5000.

Уровень Ен нормируется в зависимости от размеров объекта различения (наименьшего для данной зрительной задачи), контраста объекта с фоном, на котором он различается, и характеристики этого фона:

−фон считается светлым, если коэффициент отражения поверхно-

сти р > 0,4;

−средний фон соответствует р = 0,2 – 0,4;

−темный фон – р < 0,2.

Контраст объекта различения с фоном: К = (Lo – LФ)/LФ, где Lo – яркость объекта, кд/м2, LФ – яркость фона, кд/м2.

studfiles.net

Расчет общего освещения общие сведения

В настоящее время 90 % информации человек получает с помо­щью органов зрения. Нерациональное освещение на рабочем мес­те в цехе, лаборатории, помещении ВЦ, офисе, дома при чтении приводит к повышенной утомляемости, снижению работоспособ­ности, перенапряжению органов зрения и снижению его остроты.

Рациональное освещение должно быть спроектировано в соот­ветствии с нормами, приведенными в СНиП 23-05—95 [З], а также рекомендациями, изложенными в литературе [1, 2].

Методика расчета

Учитывая заданные по варианту характеристики зрительной ра­боты (наименьший размер объекта различения, характеристика фона и контраст объекта различения с фоном), с помощью табл. 1 определяют разряд и подразряд зрительной работы, а также нор­мируемый уровень минимальности освещенности на рабочем месте [З].

Распределяют светильники и определяют их число [2]. Равномерное освещение горизонтальной рабочей поверхности достигается при определенных отношениях расстояния между центрами светильников L, м (L = 1,7577) к высоте их подвеса над рабочей поверхностью Нр, м (в расчетах Нр= Н).

Число светильников с люминесцентными лампами (ЛЛ), кото­рые приняты во всех вариантах в качестве источника света,

(1)

где Sплощадь помещения, м2; М—расстояние между параллельными ряда­ми, м.

В соответствии с рекомендациями

(2)

Оптимальное значение М== 2…3 м.

Для достижения равномерной горизонтальной освещенности светильники с ЛЛ рекомендуется располагать сплошными рядами, параллельными стенам с окнами или длинным сторонам помеще­ния.

Для расчета общего равномерного освещения горизонтальной рабочей поверхности используют метод светового потока, учиты­вающий световой поток, отраженный от потолка и стен [2].

Расчетный световой поток, лм, группы светильников с ЛЛ

(3)

где Eн нормированная минимальная освещенность, лк; Z коэффициент ми­нимальной освещенности; Z= Eср/Eмин, для ЛЛ Z= 1,1; К — коэффициент запаса; η — коэффициент использования светового потока ламп (η зависит от КПД и кривой распределения силы света светильника, коэффициента отражения от по­толка pп и стен pc, высоты подвеса светильников над рабочей поверхностью Hp и показателя помещения i).

Показатель помещения

(4)

где А и В— соответственно длина и ширина помещения, м.

Значения коэффициента запаса зависят от характеристики по­мещения: для помещений с большим выделением тепла К= 2, со средним К= 1,8, с малым К= 1,5 [2].

Значения коэффициента использования светового потока [2] приведены ниже.

Показатель помещения

1

2

3

4

5

Коэффициент использования светового потока η

0,28…0,46

0,34…0,57

0,37…0,62

0,39…0,65

0,40…0,66

По полученному значению светового потока с помощью табл. 2 подбирают лампы, учитывая, что в светильнике с ЛЛ может быть больше одной лампы, т. е. п может быть равно 2 или 4. В этом слу­чае световой поток группы ЛЛ необходимо уменьшить в 2 или 4 раза [2].

Световой поток выбранной лампы должен соответствовать со­отношению

где Фл.расч —расчетный световой поток, лм; Фл.табл,—световой поток, определен­ный по табл. 2, лм.

Потребляемая мощность, Вт, осветительной установки

(5)

где р—мощность лампы, Вт; N число светильников, шт.; п—число ламп в све­тильнике; для ЛЛ п = 1, 4.

3. ПОРЯДОК ВЫПОЛНЕНИЯ ЗАДАНИЯ

3.1. Ознакомиться с методикой расчета.

3.2. Определить разряд и подразряд зрительной работы, нормы ос­вещенности на рабочем месте, используя данные варианта (табл. 3) и нормы освещенности (см. табл. 1).

3.3. Рассчитать число светильников.

3.4. Распределить светильники общего освещения с ЛЛ по площа­ди производственного помещения.

3.5. Определить световой поток группы ламп в системе общего ос­вещения, используя данные варианта и формулу (2).

3.6. Подобрать лампу по данным табл. 2 и проверить выполнение условия соответствия Фл.табл и Фл.расч.

3.7. Определить мощность, потребляемую осветительной установкой.

3.8. Подписать отчет и сдать преподавателю.

studfiles.net

Расчет общего освещения

Рассчитаем общее освещение комнаты разработчиков методом коэффициента использования светового потока по уравнению.

Выбираем рекомендованное для машинного зала люминесцентное освещение.

Располагаем светильники рядами вдоль длинной стороны помещения. Будем использовать светильники типа УСП-35 с двумя лампами типа ЛБ-35. Для обеспечения наилучших условий освещения, расстояние между рядами светильников L должно соответствовать отношению:

где h-высота подвеса светильников, где H = 2.7 м – высота помещения, hc = 0.2 м – свес светильника, hp = 0.75 м – высота рабочей поверхности от пола.

h= 2.7-0.2-0.75 = 1.75 [м]L = λ*h = 2.2…2.7 [м]

Длина помещения А = 6 м

Ширина помещения В = 4 м

Количество рядов светильников N найдем из уравнения:

L * (0.33* 2 + N-1) = B

Количество рядов светильников N = 2 ряда.

Согласно нормам, нормируемая минимальная освещенность при общем освещении: Eн = 300 лк.

Так как запыленность воздуха меньше 1 мг/м³, то коэффициент запаса:

Кз = 1.5.

Площадь помещения S = A*B = 6*4 = 26 [м²].

Так как мы предполагаем создать достаточно равномерное освещение, то коэффициент неравномерности освещения: z = 1.15.

Индекс помещения:

Коэффициенты отражения светового потока принимаем:

от потолка ρп = 70%, от стен ρс = 50%, от пола ρпола = 10%.

Тогда по таблице находим коэффициент использования светового потока:

η = 0.46.

Так как затенения предполагаем не создавать, то коэффициент затенения:

γ = 1.

По таблице находим световой поток лампы ЛБ-35:

Фл = 2500 лм.

Световой поток светильника: Фсв = 2*Фл = 5000 [лм].

Количество светильников в одном ряду:

Расположение светильников:

Длина светильника lсв = 1.3 м Количество светильников в ряду М = 3 шт Количество рядов светильников N = 2 шт

Так как А – М*lсв = 2.1<4*L = 12.8 [м]

(где L – рассчитанное минимальное расстояние между светильниками), то расстояние между светильниками в одном ряду L2 можно сделать равным расстоянию от крайнего светильника в ряду до стены.

Тогда

Расстояние между рядами L1 при расстоянии крайнего ряда от стены 0.33*L1:

Итак, для нормального освещения комнаты используем 6 светильников типа УСП-35 с двумя лампами типа ЛБ-35.

    1. Электробезопасность

Помещение комнаты с рабочими компьютерами должно относится к категории помещений с повышенной электроопасностью, то есть:

  1. Относительная влажность воздуха в помещении должна быть не более 75%.

  2. Должна отсутствовать токопроводящая пыль.

  3. Не должно быть повышенной температуры воздуха в помещении (температура постоянно или периодически, более одних суток, превышает +35 ºС).

  4. Должна отсутствовать возможность одновременного прикосновения человека к имеющим соединение с землей металлическим конструкциям здания, оборудованию и т. д., с одной стороны, и к металлическим корпусам аппаратуры или токоведущим частям, с другой стороны.

  5. Не должно быть токопроводящих полов.

Основными средствами защиты от поражения электрическим током при работе на компьютере являются защитное заземление и зануление.

Защитное заземление — это преднамеренное электрическое соединение с землей или ее эквивалентом металлических нетоковедущих частей электрического и технологического оборудования, которые могут оказаться под напряжением. Защитное заземление является простым, эффективным и широко распространенным способом защиты человека от поражения электрическим током при прикосновении к металлическим поверхностям, оказавшимся под напряжением. Обеспечивается это снижением напряжения между оборудованием, оказавшимся под напряжением, и землей до безопасной величины.

Опасность прикосновения человека к токоведущим частям электроустановки определяется величиной протекающего через тело человека тока. Пороговым значением является Iпор. = 0,5 мА- допустимая величина тока (согласно ГОСТ 12.1.019-79). Для питания компьютерной системы а также многих других устройств используются однофазные сети переменного тока 220 В / 50 Гц. Поэтому при таком напряжении величина тока проходящего через человека может превышать допустимое значение на несколько порядков.

Эффективной мерой защиты при питании оборудования машинного зала напряжением опасным для жизни человека является защитное заземление. Заземляющим устройством называют совокупность заземлителя (металлического проводника или группы проводников, находящихся в непосредственном соприкосновении с грунтом) и заземляющих проводников, соединяющих заземленные части электроустановки с заземлителем. Если корпус электрооборудования не имеет контакта с землей, то в случае перехода напряжения прикосновение к нему так же опасно, как и прикосновение к токоведущим частям электроустановки. Когда корпус заземляют, образуется ветвь тока, параллельная участку сети, в которую включается человек. Ток замыкания на землю перераспределяется: вследствие малого сопротивления заземляющего устройства – больший ток пойдет через заземляющую систему, и меньший – через человека. При исправном заземлении ток, проходящий через тело человека, становится неопасным. Т.к. помещение компьютерного зала относится к классу помещений без повышенной опасности, то для обеспечения безопасности персонала необходим обычный комплекс профилактических работ, включающий обеспечение надежного заземления всех металлических частей, причем наибольшая допустимая величина сопротивления заземления не должна превышать 4 Ом при мощностях сети менее 1000 Вт.

Зануление является одним из средств, обеспечивающих безопасную эксплуатацию электроустановок. Оно выполняется присоединением к неоднократно заземленному нулевому проводу корпусов и других конструктивных металлических частей электрооборудования, которые нормально не находятся под напряжением, но могут оказаться под ним при повреждении изоляции.

Наибольшее допустимое сопротивление заземляющих устройств и заземлителей в системе зануления при подключении компьютера составляет 30 Ом.

Проводка в производственных помещениях выполняется изолированными проводами или кабелями, которые в местах, где возможны их механические повреждения, укладываются в металлические трубы. Помещения, в которых устанавливаются компьютеры, должны соответствовать всем вышеуказанным требованиям.

studfiles.net

Как выполняется расчет освещения: основные методы

Методы расчета освещения

Расчет светового освещения методом светового потока, точечным, или способом удельной мощности, может быть осуществлен для любого помещения. Но если метод коэффициента использования светового потока применяется для расчета общего равномерного освещения, то точечный метод чаще используют для расчета освещенности локальных мест, а метод удельной мощности — для определения примерной мощности светильников.

Кроме того, метод расчета зависит от известных параметров освещения и его конечного назначения. Поэтому, дабы не быть голословными, давайте разберем каждую из этих методик отдельно и по этапам.

Методы расчета освещения

Как мы уже указали выше, существует три основных способа расчета освещения – это метод коэффициента использования светового потока, точечный метод и метод удельной мощности. Давайте разберем каждый из них по отдельности.

Расчет по методу коэффициента использования светового потока

Данный метод расчета, может быть выполнен для двух случаев – когда известно точное количество ламп и необходимо рассчитать их мощность, или, когда известна мощность ламп и необходимо рассчитать их количество. Давайте рассмотрим оба варианта.

Расчет производится по формуле:

Формула расчета методом коэффициента использования

Давайте рассмотрим каждое из значений из этой формулы по отдельности, и разберемся от чего оно зависит.

Часть табл.1 СНиП 23-05-95

Итак:

  • Emin – это минимальное нормируемое значение освещенности для данного помещения. Данное значение задается табл.1 СНиП 23-05-95, и зависит от таких показателей как характеристика зрительной работы, характеристик фона и типа освещения. Для отдельных помещений данный показатель приведен в табл.2 СНиП 23-05-95.

Часть табл.2 СНиП 23-05-95

  • S – это площадь помещения. Здесь все достаточно логично, ведь чем больше площадь помещения, тем большее количество света необходимо для ее освещения. И не учитывать этот фактор мы не можем.
  • Kз – это коэффициент запаса. Этот показатель учитывает, что в процессе эксплуатации лампа будет подвергаться загрязнению, и ее световой поток будет снижаться. Кроме того, данный показатель позволяет учесть снижение отраженной составляющей от стен потолка и других поверхностей. Ведь в процессе эксплуатации краски этих поверхностей тускнеют, и так же поддаются загрязнению. Инструкция советует принимать коэффициент запаса для ламп накаливания равным 1,3, а для газоразрядных ламп равным 1,5. Более точно его можно выбрать по табл.3 СНиП 23-05-95.

Выбор коэффициента запаса

  • Z – коэффициент неравномерности освещения. Данное значение зависит от равномерности распределения светильников по всей площади помещения, а также от наличия затеняющих объектов. Вычисляется данное значение по формуле:

Коэффициент неравномерности освещения

Eср – это среднее значение освещенности в помещении, а Emin – соответственно его минимальное значение.

Обратите внимание! Для большинства помещений, неравномерность освещения строго ограничена. Так, для помещений, в которых выполняются работы I—II зрительных разрядов, коэффициент Z не должен превышать 1,5 для люминесцентных ламп, или 2 для других источников света. Для остальных помещений, данный коэффициент составляет 1,8 и 3 соответственно.

  • N – это количество светильников, установленных в помещении. Он зависит от выбранной системы освещения.
  • n – количество ламп в светильнике. Если применяются одноламповые светильники, то его значение равно единице. При большем количестве, ставим соответствующее число.
  • ɳ — коэффициент использования светового потока. Он определяется как соотношение излучаемого и падающего на рабочую поверхность, светового потока всех ламп. А вот для его определения следует использовать специальную справочную литературу. Ведь данный параметр является производной от индекса помещения, коэффициента отражения стен и потолка, а также от типа светильника.

Таблица выбора коэффициента использования светового потока

Методом коэффициента использования светового потока, можно произвести расчет и количества необходимых светильников, при известной величине светового потока. Для этого следует использовать формулу —

Метод коэффициента использования для расчета количества светильников

Величины в этой формуле не отличаются от рассмотренного выше варианта, поэтому более детально данную формулу рассматривать не будем.

Расчет точечным методом

Расчет точечным методом содержит некоторые отличия для точечных светильников, и для так называемых, световых полос. Под световыми полосами подразумевают люминесцентные лампы. Давайте рассмотрим оба варианта.

Расчет точечным методом

Итак:

  • Начнем с расчета точечных светильников. На самом первом этапе расчета, нам следует вычислить высоту Нр. Данная высота является разностью между высотой подвеса светильника и нормируемой высотой минимальной освещенности.

Расчет величины Нр

  • Высота подвеса светильника — это расстояние от потолка до непосредственно лампы. Она зависит от строения светильника.

Расчет угла α

  • С нормируемой высотой минимальной освещенности, все немного сложнее. Как мы уже говорили выше, в табл. 2 СниП 23-05-95 вы можете найти минимально допустимое освещение практически для любого помещения.
  • В то же время высота, для которой указана данная норма, может отличаться. Обычно она варьируется от 0 до 1,0 метра. Это обусловлено тем, что в одних помещениях необходимо обеспечить максимальную освещенность в районе пола, а для других на уровне движения или стола, то есть 0,7 метра.
  • Для того чтобы получить высоту Нр, необходимо от высоты помещения вычесть две рассмотренные выше высоты.

Чертим план помещения с расстановкой на нем светильников

План помещения с большим количеством светильников

  • Теперь нам следует начертить план помещения и размещения светильников, на котором мы должны определить равноудаленную точку от всех светильников в помещении. Именно для нее будет производится расчет. Кроме того, масштабированный план значительно облегчит расчет точечным методом освещения в любом помещении. Ведь это позволит вычислить расстояние от любого из светильников до расчётной точки – обычно его обозначают d.
  • Вычисление величин Нр и d, нам было необходимо для получения значения горизонтальной освещенности в искомой точке. Эта величина вычисляется по специальным графикам пространственных изолюксов. А этот график зависит от типа светильников.

На фото графики пространственных изолюксов

  • Найдя параметр Нр на оси ординат, а параметр d на оси абсцисс, на их пересечении мы получим условную освещенность в искомой точке от данного светильника.
  • Но нам необходимо найти условную освещенность в данной точке от каждого расположенного поблизости светильника, а затем суммировать их значение. Таким образом мы получим величину Ее.
  • Теперь, для расчета точечным методом, пример формулы будет следующим –

Формула расчета точечным методом

  • В этой формуле, 1000 – это условный световой поток лампы. Ен – нормируемая освещенность, kз – коэффициент запаса, выбор которого мы рассматривали в предыдущем разделе нашей статьи.
  • µ — это коэффициент добавочной освещенности от соседних светильников и отраженного света. Обычно значение данного показателя принимают от 1 до 1,5.

Но для люминесцентных ламп данный расчёт не подходит. Для него разработан так называемый точечный метод расчета светящихся полос. Суть данного метода идентична варианту, рассмотренному выше, и его вполне можно сделать своими руками.

Расчет для светящихся полос

Для начала, как и в первом варианте, вычисляем значение Нр. Затем рисуем план помещения и расположения светильников.

Обратите внимание! План следует создавать с соблюдением масштаба. Это необходимо для определения точки А, для которой мы производим расчет. Эта точка будет расположена посередине светящейся полосы, то есть лампы, и удалена от этой середины на расстояние р.

План помещения и пространственные изолюксы для расчета светящихся полос

  • На следующем этапе, определяем линейную плотность светового потока. Делается это по формуле F=Fсв×n/L. Для этой формулы Fсв – это световой поток светильника. Его значение равно сумме световых потоков всех ламп в светильнике. N – это количество светильников в полосе. Обычно таких светильников один, но могут быть и другие варианты. L – это длина лампы.
  • На следующем этапе, нам необходимо найти так называемые приведенные размеры – р* и L*. Р* = p/Hp, а L*=L/2 ×Hp. Исходя из этих приведенных размеров, по графикам линейных изолюксов находим относительную освещенность в заданной точке. Дальнейшие вычисления выполняем по той же формуле, как и для точечных светильников.

Расчет способом удельной мощности

Последним возможным вариантом расчета освещения, является метод удельной мощности. Данный метод относительно прост, но не дает точных результатов. Кроме того, он требует использования большого количества справочной литературы, приведенной на видео.

Суть данного метода сводится к следующему. Прежде всего, определяем величину Нр. Ее мы искали во всех описанных выше вариантах, поэтому не будем на ней останавливаться более подробно.

Таблицы выбора удельной мощности светильников

  • Дальнейший расчет производится по таблицам. В них мы определяем необходимую для данного помещения удельную мощность всех светильников – Руд.
  • После этого можно определить мощность одной лампы. Делается это по формуле –

Формула расчета удельной мощности

Где S – площадь помещения, а n – количество ламп.

Исходя из полученного значения, находим ближайшее большее значение существующих ламп. Если мощность ламп не соответствует требованиям светильника, то увеличиваем количество светильников, и повторяем расчет методом удельной мощности.

Выбор метода расчета

Имея представление, каким образом производится расчет, давайте рассмотрим, какой из способов выбрать конкретно для вашего случая. Ведь различные методы расчета предназначены для различных помещений и условий.

Итак:

  • Начнем с метода коэффициента использования светового потока. Данный способ нашел достаточно широкое применение. Преимущественно его применяют для расчета общего освещения в помещениях, не имеющих перепадов высот по горизонтали. Кроме того, данный способ не сможет выявить затененные участки, и произвести расчет для них.

Выбираем метод расчета освещенности

  • Для этих целей существует точечный метод. Он применяется для расчета местного освещения, затененных участков и помещений с перепадом высот, а также наклонных поверхностей. Но вот общее равномерное освещение таким методом посчитать достаточно сложно — ведь он не учитывает отраженные и некоторые другие составляющие.
  • А вот способ удельной мощности, является одним из наиболее простых. Но в то же время он не дает точных значений, и преимущественно используется в качестве приближенного. С его помощью определяют приближенное количество светильников и их мощность.

Кроме того, данный расчет позволяет определить, какова приближенная цена монтажа и эксплуатации данной осветительной системы.

Вывод

Конечно, такие сложные методологии совершенно не нужны, если вы просто создаете освещение рассады в домашних условиях. Для этого и подобных случаев, достаточно применить нормируемый показатель минимальной освещенности, умножив его на площадь помещения.

А уже, исходя из полученного значения, выбрать количество и мощность ламп. Но если говорить о промышленных масштабах, то здесь без тщательного расчёта не обойтись. И лучше в данном вопросе не заниматься самодеятельностью, а довериться профессиональным конструкторским бюро.

elektrik-a.su

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *